Fokker-Planck equations for an equilibrium model of chromatin folding
نویسندگان
چکیده
We analyze the eeects of random local linker length variability on the global morphology of a very long, linear, homogeneous chromatin ber that is modelled as a diiusion process that is parametrized by arclength under a suitable spatial re-scaling. We obtain Fokker-Planck equation for the process whose solution, a probability density function describes the folding.
منابع مشابه
On convex Sobolev inequalities and the rate of convergence to equilibrium for Fokker-Planck type equations
It is well known that the analysis of the large-time asymptotics of Fokker-Planck type equations by the entropy method is closely related to proving the validity of convex Sobolev inequalities. Here we highlight this connection from an applied PDE point of view. In our unified presentation of the theory we present new results to the following topics: an elementary derivation of Bakry-Emery type...
متن کاملPseudo-spectral Matrix and Normalized Grunwald Approximation for Numerical Solution of Time Fractional Fokker-Planck Equation
This paper presents a new numerical method to solve time fractional Fokker-Planck equation. The space dimension is discretized to the Gauss-Lobatto points, then we apply pseudo-spectral successive integration matrix for this dimension. This approach shows that with less number of points, we can approximate the solution with more accuracy. The numerical results of the examples are displayed.
متن کاملConvergence to Global Equilibrium for Fokker-planck Equations on a Graph and Talagrand-type Inequalities
In recent work, Chow, Huang, Li and Zhou [6] introduced the study of Fokker-Planck equations for a free energy function defined on a finite graph. When N ≥ 2 is the number of vertices of the graph, they show that the corresponding FokkerPlanck equation is a system of N nonlinear ordinary differential equations defined on a Riemannian manifold of probability distributions. The different choices ...
متن کاملOn the master equation approach: linear and nonlinear Fokker–Planck equations
We discuss the relationship between kinetic equations of the Fokker-Planck type (two linear and one non-linear) and the Kolmogorov (a.k.a. master) equations of certain N -body diffusion processes, in the context of Kac’s propagation-of-chaos limit. The linear Fokker-Planck equations are well-known, but here they are derived as a limit N → ∞ of a simple linear diffusion equation on 3N − C-dimens...
متن کامل